Hong Kong Electronics Project Competition (HKEPC)

Winners' Conference

Theme: IoT Realization in a Smart City

Date: 10 November 2017 (Friday)

Time: 2:15 - 6:30 pm

Venue: Conference Hall 6 & 7,

2/F, Lakeside 2, Phase 2,

Hong Kong Science Park, Shatin

Conference Fee: FREE

Please enrol to the conference via the HKIE website http://en.hkie.org.hk For enquiries, please send email to yhshumhkie@gmail.com or chanjohn@clp.com.hk

Organizer:

雷子分部

Venue Sponsor:

Conference Background and Objectives

The Electronics Division of Hong Kong Institution of Engineers (HKIE) has successfully organized the Hong Kong Electronics Project Competition 2016 & 2017 (HKEPC 2016 & 2017) in March 2016 & 2017 respectively. Both competitions attracted more than 50 projects competing in the Industry/Open and Tertiary Education Categories, and many projects were innovative, practical and with good business potential.

To further promote the electronics industry in Hong Kong and share the HKEPC winners' success, we are going to organize a "Hong Kong Electronics Project Competition Winners' Conference" with the theme "IoT Realization in a Smart City" for the Industry Category winning teams from both HKEPC2016 and HKEPC2017 to present and share the latest development of their projects with the conference participants.

Besides, a Member's Networking Gathering session will follow right after the Conference so that you can network with friends, partners and industry professionals, as well as members of the HKIE.

Rundown:

- Reception and registration (2:15pm~2:30pm)
- Welcome Speech
- Keynote Speech: Ir Peter Yeung,

Head of Electronics & ICT Clusters, Smart City, HKSTP

- Presentation by Remotec technology Ltd, ASTRI and Autotoll Ltd
- Break
- Presentation by Airtport Authority & D2V Ltd., Clever Motion Tecnology Ltd.
- Panel discussion with Presenters
- Closing Remarks
- Member's Gathering and Networking (5:30~6:30pm)

Supporting Organizations:

Winners Presenting:

SmartAirCon from Remotec technology Ltd

This is a combined use of hardware and software and machine learning algorithms to optimize the use of air conditioners. In Hong Kong, since 34% of electricity consumption in the residential sector is for air conditioning, by allowing a grid of air conditioners and living space environment to be further monitored and controlled, it is possible to eliminate peak demand of electricity and reduce electricity consumption, which leads to a reduction of carbon footprint and greenhouse gas emission.

Real Time Location Proximity data System for Smart City from ASTRI

This platform provides seamless indoor and outdoor geographic information, time stamps, real time data capturing and monitoring, smart navigation and big data analysis for IoT devices. The system can also accommodate scalability issue due to massive connections.

Vgo from Autotoll Ltd

Vgo is a lifestyle mobile App tailor-made for motorists, with functions including an ITS integrated route planning, real time traffic news and navigation, dining recommendations and offers, mobile shopping, e-bidding, Autotoll transaction record checking and e-payment.

Converting Off-line Vending Machines to IoT for Smart Cities from Clever Motion Technology Ltd.

The solution includes a specially designed industrial grade PC using public 3G network and one set of software to cope with all models. GPIO is used to select software for models. Octopus transactions can be uploaded and settled automatically through 3G. Sales records and events can be captured.

High-throughput and Automated Airfield Ground Lightning Inspection System from Airport Authority & D2V Limited

World practice of conducting integrity checking of Airfield ground lighting (AGL) on runways for missing and lossen parts relies on manual visual inspection, but with this system scanning and inspection of the AGL can be automated. Core technologies are centered on an intelligent processing of sampled data on AGL using machine vision and machine learning techniques.